Superpixel-based spatial amplitude and phase modulation using a digital micromirror device.

نویسندگان

  • Sebastianus A Goorden
  • Jacopo Bertolotti
  • Allard P Mosk
چکیده

We present a superpixel method for full spatial phase and amplitude control of a light beam using a digital micromirror device (DMD) combined with a spatial filter. We combine square regions of nearby micromirrors into superpixels by low pass filtering in a Fourier plane of the DMD. At each superpixel we are able to independently modulate the phase and the amplitude of light, while retaining a high resolution and the very high speed of a DMD. The method achieves a measured fidelity F = 0.98 for a target field with fully independent phase and amplitude at a resolution of 8 × 8 pixels per diffraction limited spot. For the LG10 orbital angular momentum mode the calculated fidelity is F = 0.99993, using 768 × 768 DMD pixels. The superpixel method reduces the errors when compared to the state of the art Lee holography method for these test fields by 50% and 18%, with a comparable light efficiency of around 5%. Our control software is publicly available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-speed phase modulation using the RPC method with a digital micromirror-array device.

An improved implementation of the reverse phase contrast (RPC) method for rapid optical transformation of amplitude patterns into spatially similar phase patterns using a high-speed digital micromirror-array device (DMD) is presented. Aside from its fast response, the DMD also provides an electronically adjustable and inherently aligned input iris that simplifies the optimization of the RPC sys...

متن کامل

Spatial amplitude and phase modulation using commercial twisted nematic LCDs.

We present a method for full spatial phase and amplitude control of a laser beam using a twisted nematic LCD combined with a spatial filter. By spatial filtering we combine four neighboring pixels into one superpixel. At each superpixel we are able to independently modulate the phase and the amplitude of light. We experimentally demonstrate the independent phase and amplitude modulation using t...

متن کامل

An Efficient Hierarchical Modulation based Orthogonal Frequency Division Multiplexing Transmission Scheme for Digital Video Broadcasting

Due to the increase of users the efficient usage of spectrum plays an important role in digital terrestrial television networks. In digital video broadcasting, local and global content are transmitted by single frequency network and multifrequency network respectively. Multifrequency network support transmission of global content and it consumes large spectrum. Similarly local content are well ...

متن کامل

Shaping Laguerre-Gaussian laser modes with binary gratings using a digital micromirror device.

Laguerre-Gaussian (LG) beams are used in many research fields, including microscopy, laser cavity modes, and optical tweezing. We developed a holographic method to generate pure LG modes (amplitude and phase) with a binary amplitude-only digital micromirror device (DMD) as an alternative to the commonly used phase-only spatial light modulator. The advantages of such a DMD include very high fram...

متن کامل

Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques.

This paper investigates experimental means of measuring the transmission matrix (TM) of a highly scattering medium, with the simplest optical setup. Spatial light modulation is performed by a digital micromirror device (DMD), allowing high rates and high pixel counts but only binary amplitude modulation. On the sensor side, without a reference beam, the CCD camera provides only intensity measur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 22 15  شماره 

صفحات  -

تاریخ انتشار 2014